Effect of Wavelet Compression on the Automatic Classification of Urban Environments Using High Resolution Multispectral Imagery and Laser Scanning Data

نویسنده

  • J. B. K. KIEMA
چکیده

This paper examines the influence of data fusion and wavelet compression on the automatic classification of urban environments. The principal data used is airborne Daedalus scanner imagery. Laser scanning data is introduced as an additional channel alongside the spectral channels thus effectively fusing the local height and multispectral information. The feature base is expanded to include both spectral (e.g., spectral signature and texture) and spatial features (e.g., shape, size, topology etc.). This enables the incorporation of context information into the feature extraction. A maximum likelihood classification is then applied. It is demonstrated that the classification of urban scenes is significantly improved by integrating multispectral and geometric datasets. The fused imagery is then systematically compressed (channel by channel) at compression rates ranging from 5 to 100 using a wavelet-based compression algorithm. The compressed imagery is then classified. Analysis of the results obtained indicates that a compression rate of up to 20 can conveniently be employed without adversely affecting the segmentation results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Interpretation of UltraCam Imagery by Combination of Support Vector Machine and Knowledge-based Systems

With the development of digital sensors, an increasing number of high-resolution images are available. Interpretation of these images is not possible manually, which necessitates seeking for practical, fast and automatic solutions to solve the environmental and location-based management problems. The land cover classification using high-resolution imagery is a difficult process because of the c...

متن کامل

Kohonen Self Organizing for Automatic Identification of Cartographic Objects

Automatic identification and localization of cartographic objects in aerial and satellite images have gained increasing attention in recent years in digital photogrammetry and remote sensing. Although the automatic extraction of man made objects in essence is still an unresolved issue, the man made objects can be extracted from aerial photos and satellite images. Recently, the high-resolution s...

متن کامل

Object-Based Classification of UltraCamD Imagery for Identification of Tree Species in the Mixed Planted Forest

This study is a contribution to assess the high resolution digital aerial imagery for semi-automatic analysis of tree species identification. To maximize the benefit of such data, the object-based classification was conducted in a mixed forest plantation. Two subsets of an UltraCam D image were geometrically corrected using aero-triangulation method. Some appropriate transformations were perfor...

متن کامل

Urban Land Cover Mapping Using Object/pixel-based Data Fusion and Ikonos Images

The use of high resolution IKONOS imagery should make it possible to extract urban features like buildings and roads more easily than conventional satellite image data. This work examines the synergetic ability of using spectral information from multispectral data in combination with spatial information from panchromatic data in urban land cover mapping using IKONOS Imagery. In this work we tri...

متن کامل

Provide a Deep Convolutional Neural Network Optimized with Morphological Filters to Map Trees in Urban Environments Using Aerial Imagery

Today, we cannot ignore the role of trees in the quality of human life, so that the earth is inconceivable for humans without the presence of trees. In addition to their natural role, urban trees are also very important in terms of visual beauty. Aerial imagery using unmanned platforms with very high spatial resolution is available today. Convolutional neural networks based deep learning method...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010